
Lecture 12

Angular Quadratures

1 Introduction

Angular quadratures play a critical role in the Sn method. The purpose of this lecture is

to describe the basic properties of 1-D angular quadratures. An N-point quadrature set

consists of N points and weights, {µm, ωm}N
m=1, such that

N∑
m=1

f(µm)wm ≈
∫ +1

−1

f(µ) dµ . (1)

Perhaps the simplest quadrature set is that corresponding to the rectangle rule:

N∑
m=1

f(µm)wm ≈
∫ +1

−1

f(µ) dµ , (2)

where

wm =
2

N
, m = 1, N, (3a)

and

µm = −1 +
2

N
(m− 1

2
) , m = 1, N. (3b)

Assuming that f(µ) is integrable, the rectangle-rule quadrature yields the exact integral in

the limit as N → ∞, but for any finite N, the formula is exact only for linear functions.
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2 Gauss Quadratures

The Gauss N-point quadrature formula is exact for all polynomials of degree 2N − 1 or

less. Both the directions and weights are chosen to optimize accuracy (N directions and

N weights). Thus Gauss quadratures are the most accurate of all 1-D quadratures. Given

any N distinct quadrature points, one can always find N weights so that the corresponding

quadrature formula is exact for polynomials of degree N-1 or less. Specifically, the weights

must satisfy the following linear system of equations:

N∑
m=1

P�(µm)wm = 2δ�,0 , � = 0, N − 1. (4)

A potential problem with this approach is that the weights may turn out to be negative.

Why is this undesirable? In principle, a combination of positive and negative weights can

lead to roundoff problems, but in practice, this is not usually a problem. However, negative

weights do represent a problem from the viewpoint of interpolation. For instance, let us

expand a polynomial of degree N − 1 in terms of the Lagrange interpolatory polynomials:

g(µ) =
N∑

m=1

g(µm)Bm(µ) , (5)

where

Bm(µ) =
(µ− µ1)(µ− µ2) · · · (µ− µm−1)(µ− µm+1) · · · (µ− µN)

(µm − µ1)(µm − µ2) · · · (µm − µm−1)(µm − µm+1) · · · (µm − µN)
. (6)
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Integrating Eq. (5), we get

∫ +1

−1

g(µ) dµ =
N∑

m=1

g(µm)

∫ +1

−1

Bm(µ) dµ . (7)

Since any polynomial of degree N-1 can be represented according to Eq. (5), it follows

from Eq. (7) that any such polynomial is exactly integrated with the following quadrature

formula: ∫ +1

−1

g(µ) dµ =
N∑

m=1

g(µm)wm , (8)

where

wm =

∫ +1

−1

Bm(µ) dµ . (9)

Thus the wm given by Eq. (9) are those that satisfy Eq. (4). If any particular wk is negative,

it implies that Bk(µ) has a negative area. The function, Bk(µ), represents the interpolant

for the discrete function that is unity at µk and zero at the other quadrature points. If the

integral of Bk(µ) is negative, it clearly indicates that this interpolation is quite poor. The

accuracy of the interpolation is essentially unrelated to the accuracy of the integration, but

it is important if one uses a trial space representation for ψ(µ) that is consistent with the

quadrature formula, i.e.,

ψ(µ) =
N∑

m=1

ψ(µm)Bm(µ) . (10)

This is done in the discrete-ordinates or Sn method, which is one of the most popular

numerical methods for solving the transport equation.
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This positivity problem can be avoided by choosing the N quadrature points to be the

roots of the Legendre polynomial of degree N , PN(µ). For instance, any polynomial of

degree 2N − 1 can be expressed in the following form:

g(µ) = h(µ)PN(µ) + q(µ) , (11)

where h(µ) and q(µ) are polynomials of degree N − 1 or less. Integrating Eq. (11) we find

that

∫ +1

−1

g(µ) dµ =

∫ +1

−1

h(µ)PN(µ) dµ+

∫ +1

−1

q(µ) dµ ,

=

∫ +1

−1

q(µ) dµ . (12)

If the quadrature points are chosen to be the roots of PN(µ) then

N∑
m=1

g(µm)wm =
N∑

m=1

h(µm)PN(µm)wm +
N∑

m=1

q(µm)wm ,

=
N∑

m=1

q(µm)wm . (13)

The weights defined by (6a) give an exact integration of any polynomial of degree N-1 or

less regardless of the value of µm that are chosen. Since q(µ) is such a polynomial, it follows

that ∫ +1

−1

g(µ) dµ =
N∑

m=1

g(µm)wm , (14)

where the {µm}N
m=1 are the roots of PN(µ) and the weights are defined by Eq. (9). This

particular quadrature set is known as the Gauss N–point set, and it is exact for all poly-
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nomials of degree 2N − 1 or less. Furthermore, the Gauss weights are positive. This can

be shown as follows. For any k,

∫ +1

−1

Bk(µ) dµ =
N∑

m=1

Bk(µm)wm . (15)

From Eq. (6) it can be seen that

Bk(µm) = δk,m . (16)

Thus from Eq. (16) we find that

∫ +1

−1

Bk(µ) dµ = wk . (17)

However, since Bk(µ) is a polynomial of degree N–1 or less, it follows that the Gauss formula

can also integrate B2
k(µ):

∫ +1

−1

B2
k(µ) dµ =

N∑
m=1

B2
k(µm)ωm = ωk . (18)

Since the left side of (14) must be positive, it follows that the Gauss weights are indeed

positive. Finally, we note that the roots of PN(x) always lie on the open interval (−1,+1).

There are many variations on Gauss quadrature in which one gives up accuracy in return

for placing quadrature points at specific locations. For instance, every N -point Labatto

quadrature has quadrature points at µ = ±1. The remaining free parameters (N weights

and N − 2 points) are chosen to maximize integration accuracy. Thus an N -point Lobatto

set exactly integrates all polynomials of degree 2N − 3 or less.
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